Contents

Foreword
Acknowledgements
Photo Credits

Chapter 1
Introduction

1.1 Overview 1-1

1.2 Example Buildings 1-2

 1.2.1 Building #1 – 5-Story Office Building 1-2
 1.2.2 Building #2 – 12-Story Emergency Operations Center 1-6
 1.2.3 Building #3 – 16-Story Residential Building 1-8
 1.2.4 Building #4 – 30-Story Office Building 1-9

1.3 Organization of This Design Guide 1-10

Chapter 2
Material Requirements and Strength Reduction Factors

2.1 Overview 2-1

2.2 Material Requirements 2-1

 2.2.1 Concrete Design Properties 2-1
 Specified Compressive Strength 2-1
 Modulus of Elasticity 2-2
 Modulus of Rupture 2-3
 Lightweight Concrete Modification Factor 2-3
 2.2.2 Nonprestressed Steel Reinforcement 2-4
 Material Properties 2-4
 Design Properties 2-7
 2.2.3 Headed Shear Stud Reinforcement 2-9
 2.2.4 Durability of Steel Reinforcement 2-9
 Specified Concrete Cover 2-9
 Nonprestressed Coated Reinforcement 2-10

2.3 Strength Reduction Factors 2-10

 2.3.1 Overview 2-10
 2.3.2 Strength Reduction Factors Based On Action or Structural Element 2-11
 2.3.3 Strength Reduction Factors For Moment, Axial Force, Or Combined Moment and Axial Force 2-11
 2.3.4 Strength Reduction Factors For Shear In Structures Relying On Special Moment Frames and Special Structural Walls 2-13

Chapter 3
Design Loads and Load Combinations

3.1 Overview 3-1

3.2 Design Loads 3-1

3.3 Seismic Design Category 3-1

3.4 Live Load Reduction 3-3

3.5 Load Factors and Combinations 3-4

3.6 Determination of Wind Forces 3-8

3.7 Determination of Seismic Forces 3-8

 3.7.1 Seismic Forces on the SFRS 3-8
 3.7.2 Seismic Forces on Diaphragms, Chords, and Collectors 3-11

3.8 Examples 3-16

 3.8.1 Example 3.1 – Determination of Wind Forces: Building #1 3-16
 3.8.2 Example 3.2 – Determination of Wind Forces: Building #2 3-19
 3.8.3 Example 3.3 – Determination of Wind Forces: Building #3 3-25
 3.8.4 Example 3.4 – Determination of Wind Forces: Building #4 3-31
 3.8.5 Example 3.5 – Determination of the Seismic Design Category: Building #1 3-38
 3.8.6 Example 3.6 – Determination of the Seismic Design Category: Building #2 3-41
 3.8.7 Example 3.7 – Determination of the Seismic Design Category: Building #3 3-42
 3.8.8 Example 3.8 – Determination of the Seismic Design Category: Building #4 3-43
 3.8.9 Example 3.9 – Determination of Seismic Forces: SFRS of Building #1 (Framing Option A) 3-44
 3.8.10 Example 3.10 – Determination of Seismic Forces: SFRS of Building #2 3-47
 3.8.11 Example 3.11 – Determination of Seismic Forces: SFRS of Building #3 3-49
 3.8.12 Example 3.12 – Determination of Seismic Forces: SFRS of Building #4 3-52
 3.8.13 Example 3.13 – Determination of Seismic Forces: Diaphragms of Building #1 (Framing Option A) 3-55
 3.8.14 Example 3.14 – Determination of Seismic Forces: Diaphragms of Building #2 3-56
Design Guide on the ACI 318 Building Code Requirements for Structural Concrete

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.8.15</td>
</tr>
<tr>
<td>3.8.16</td>
</tr>
</tbody>
</table>

Chapter 4

One-way Slabs

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Overview</td>
<td>4-1</td>
</tr>
<tr>
<td>4.2 Minimum Slab Thickness</td>
<td>4-1</td>
</tr>
<tr>
<td>4.3 Required Strength</td>
<td>4-2</td>
</tr>
<tr>
<td>4.3.1 Analysis Methods</td>
<td>4-2</td>
</tr>
<tr>
<td>4.3.2 Critical Sections for Flexure and Shear</td>
<td>4-3</td>
</tr>
<tr>
<td>4.4 Design Strength</td>
<td>4-4</td>
</tr>
<tr>
<td>4.4.1 General</td>
<td>4-4</td>
</tr>
<tr>
<td>4.4.2 Nominal Flexural Strength</td>
<td>4-5</td>
</tr>
<tr>
<td>4.4.3 Nominal Shear Strength</td>
<td>4-6</td>
</tr>
<tr>
<td>4.5 Determination of Required Reinforcement</td>
<td>4-7</td>
</tr>
<tr>
<td>4.5.1 Required Flexural Reinforcement</td>
<td>4-7</td>
</tr>
<tr>
<td>4.5.2 Minimum Shrinkage and Temperature Reinforcement</td>
<td>4-8</td>
</tr>
<tr>
<td>4.6 Reinforcement Detailing</td>
<td>4-8</td>
</tr>
<tr>
<td>4.6.1 Concrete Cover</td>
<td>4-8</td>
</tr>
<tr>
<td>4.6.2 Minimum Spacing of Flexural Reinforcing Bars</td>
<td>4-8</td>
</tr>
<tr>
<td>4.6.3 Maximum Spacing of Flexural Reinforcing Bars</td>
<td>4-9</td>
</tr>
<tr>
<td>4.6.4 Selection of Flexural Reinforcement</td>
<td>4-10</td>
</tr>
<tr>
<td>4.6.5 Development of Flexural Reinforcement</td>
<td>4-10</td>
</tr>
<tr>
<td>Development of Deformed Bars in Tension</td>
<td>4-10</td>
</tr>
<tr>
<td>Development of Standard Hooks in Tension</td>
<td>4-13</td>
</tr>
<tr>
<td>Development of Headed Deformed Bars in Tension</td>
<td>4-15</td>
</tr>
<tr>
<td>Development of Mechanically Anchored Deformed Bars in Tension</td>
<td>4-16</td>
</tr>
<tr>
<td>Development of Positive and Negative Flexural Reinforcement</td>
<td>4-17</td>
</tr>
<tr>
<td>4.6.6 Splices of Reinforcement</td>
<td>4-20</td>
</tr>
<tr>
<td>Overview</td>
<td>4-20</td>
</tr>
<tr>
<td>Lap Splices</td>
<td>4-20</td>
</tr>
<tr>
<td>Mechanical Splices</td>
<td>4-21</td>
</tr>
<tr>
<td>Welded Splices</td>
<td>4-22</td>
</tr>
<tr>
<td>4.6.7 Structural Integrity Reinforcement</td>
<td>4-22</td>
</tr>
<tr>
<td>4.6.8 Recommended Flexural Reinforcement Details</td>
<td>4-22</td>
</tr>
</tbody>
</table>

Chapter 5

Two-way Slabs

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Overview</td>
<td>5-1</td>
</tr>
<tr>
<td>5.2 Minimum Slab Thickness</td>
<td>5-2</td>
</tr>
<tr>
<td>5.2.1 Overview</td>
<td>5-2</td>
</tr>
<tr>
<td>5.2.2 Flat Plates</td>
<td>5-2</td>
</tr>
<tr>
<td>5.2.3 Flat Slabs</td>
<td>5-5</td>
</tr>
<tr>
<td>5.2.4 Two-way Beam-Supported Slabs</td>
<td>5-7</td>
</tr>
<tr>
<td>5.2.5 Two-way Joists</td>
<td>5-8</td>
</tr>
<tr>
<td>5.2.6 Flat Plate Voided Concrete Slabs</td>
<td>5-10</td>
</tr>
<tr>
<td>5.3 Required Strength</td>
<td>5-11</td>
</tr>
<tr>
<td>5.3.1 Analysis Methods</td>
<td>5-11</td>
</tr>
<tr>
<td>5.3.2 Critical Sections for Flexure</td>
<td>5-12</td>
</tr>
<tr>
<td>5.3.3 Critical Sections for Shear</td>
<td>5-14</td>
</tr>
<tr>
<td>One-way Shear</td>
<td>5-14</td>
</tr>
<tr>
<td>Two-way Shear</td>
<td>5-14</td>
</tr>
<tr>
<td>Section Properties of Critical Sections</td>
<td>5-21</td>
</tr>
<tr>
<td>5.3.4 Direct Design Method</td>
<td>5-26</td>
</tr>
<tr>
<td>Overview</td>
<td>5-26</td>
</tr>
<tr>
<td>Determination of Factored Bending Moments in a Design Strip</td>
<td>5-27</td>
</tr>
<tr>
<td>Determination of Factored Moments in Columns and Walls</td>
<td>5-33</td>
</tr>
<tr>
<td>Determination of Factored Shear in Slabs with Beams</td>
<td>5-35</td>
</tr>
<tr>
<td>5.3.5 Lateral Loads</td>
<td>5-35</td>
</tr>
<tr>
<td>5.4 Design Strength</td>
<td>5-36</td>
</tr>
<tr>
<td>5.4.1 General</td>
<td>5-36</td>
</tr>
<tr>
<td>5.4.2 Nominal Flexural Strength</td>
<td>5-36</td>
</tr>
</tbody>
</table>
5.4.3 Nominal One-way Shear Strength 5-38
5.4.4 Nominal Two-way Shear Strength 5-39

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>5-39</td>
</tr>
<tr>
<td>Two-way Shear Strength Provided by Concrete in Slabs without Shear Reinforcement</td>
<td>5-39</td>
</tr>
<tr>
<td>Two-way Shear Strength Provided by Concrete in Slabs with Shear Reinforcement</td>
<td>5-40</td>
</tr>
<tr>
<td>Two-way Shear Strength Provided by Single- or Multiple-leg Stirrups</td>
<td>5-41</td>
</tr>
<tr>
<td>Two-way Shear Strength Provided by Headed Shear Stud Reinforcement</td>
<td>5-42</td>
</tr>
<tr>
<td>Summary of Nominal Two-way Shear Strength Requirements</td>
<td>5-43</td>
</tr>
</tbody>
</table>

5.4.5 Openings in Two-way Slab Systems 5-45

5.5 Determination of Required Reinforcement 5-46

5.5.1 Required Flexural Reinforcement 5-46
5.5.2 Required Shear Reinforcement
 - Stirrups 5-47
 - Headed Shear Stud Reinforcement 5-48

5.6 Reinforcement Detailing 5-49

5.6.1 Concrete Cover 5-49
5.6.2 Minimum Spacing of Flexural Reinforcing Bars 5-49
5.6.3 Maximum Spacing of Flexural Reinforcing Bars 5-49
5.6.4 Selection of Flexural Reinforcement 5-49
5.6.5 Corner Restraint in Slabs 5-50
5.6.6 Termination of Flexural Reinforcement 5-51
5.6.7 Splices of Reinforcement 5-53
5.6.8 Structural Integrity Reinforcement 5-53
5.6.9 Shear Reinforcement Details 5-53

5.7 Design Procedure 5-53

5.8 Examples 5-56

5.8.1 Example 5.1 – Determination of Minimum Slab Thickness: Flat Plate System, Building #1 (Framing Option A) 5-56
5.8.2 Example 5.2 – Determination of Minimum Slab Thickness: Flat Plate System with Edge Beams, Building #1 (Framing Option B) 5-57
5.8.3 Example 5.3 – Determination of Minimum Slab Thickness: Two-way Beam-Supported Slab System, Building #1 (Framing Option C) 5-59
5.8.4 Example 5.4 – Determination of Minimum Slab Thickness: Flat Slab System With Edge Beams, Building #1 (Framing Option D) 5-62
5.8.5 Example 5.5 – Determination of Minimum Thickness: Two-way Joist System, Building #1 (Framing Option E) 5-65
5.8.6 Example 5.6 – Determination of Minimum Slab Thickness: Flat Plate System, Building #3 5-66
5.8.7 Example 5.7 – Determination of Required Flexural Reinforcement: Flat Plate System, Building #1 (Framing Option A), SDC A 5-68
5.8.8 Example 5.8 – Determination of Required Flexural Reinforcement: Flat Plate System With Edge Beams, Building #1 (Framing Option B), SDC A 5-80
5.8.9 Example 5.9 – Determination of Required Flexural Reinforcement: Two-way Beam-Supported Slab System, Building #1 (Framing Option C), SDC A 5-88
5.8.10 Example 5.10 – Determination of Required Flexural Reinforcement: Flat Slab System With Edge Beams, Building #1 (Framing Option D), SDC A 5-95
5.8.11 Example 5.11 – Determination of Required Flexural Reinforcement: Two-way Joist System, Building #1 (Framing Option E), SDC A 5-104
5.8.12 Example 5.12 – Determination of Required Flexural Reinforcement: Flat Plate System, Building #1 (Framing Option A), SDC B 5-114
5.8.13 Example 5.13 – Check of Shear Strength Requirements: Flat Plate System, Building #1 (Framing Option A), SDC B 5-126
5.8.14 Example 5.14 – Check of Shear Strength Requirements: Flat Plate System, Building #1 (Framing Option A), SDC B, Shear Cap 5-133
5.8.15 Example 5.15 – Check of Shear Strength Requirements: Flat Plate System, Building #1 (Framing Option A), SDC B, Slab Opening 5-136
5.8.16 Example 5.16 – Check of Shear Strength Requirements: Flat Slab System With Edge Beams, Building #1 (Framing Option D), SDC A, Circular Columns 5-141
5.8.17 Example 5.17 – Determination of Shear Reinforcement: Flat Plate System, Building #1 (Framing Option A), SDC B, Stirrups 5-144
5.8.18 Example 5.18 – Determination of Shear Reinforcement: Flat Plate System, Building #1 (Framing Option A), SDC B, Headed Shear Studs 5-150
Chapter 6
Beams

6.1 Overview 6-1

6.2 Sizing the Cross-Section 6-2

6.2.1 Determining the Beam Depth 6-2
6.2.2 Determining the Beam Width 6-3
6.2.3 General Guidelines for Sizing Beams for Economy 6-5

6.3 Required Strength 6-5

6.3.1 Analysis Methods 6-5
Overview 6-5
Bending Moments and Shear Forces 6-5
Torsional Moments 6-6

6.3.2 Critical Sections for Flexure, Shear, and Torsion 6-8

6.3.3 Redistribution of Moments in Continuous Flexural Members 6-9

6.4 Design Strength 6-10

6.4.1 General 6-10

6.4.2 Nominal Flexural Strength 6-11
Rectangular Sections with Tension Reinforcement Only 6-11
Rectangular Sections with Tension and Compression Reinforcement 6-12
T-Beams and Inverted L-Beams with Tension Reinforcement 6-14

6.4.3 Nominal Shear Strength 6-16
Overview 6-16
Nominal Shear Strength Provided by Concrete 6-16
Nominal Shear Strength Provided by Shear Reinforcement 6-17

6.4.4 Nominal Torsional Strength 6-19

6.5 Determination of Required Reinforcement 6-21

6.5.1 Required Flexural Reinforcement 6-21
Rectangular Sections with Tension Reinforcement Only 6-21
Rectangular Sections with Tension and Compression Reinforcement 6-23
T-Beams and Inverted L-Beams with Tension Reinforcement 6-24

6.5.2 Required Shear Reinforcement 6-25

6.5.3 Required Torsion Reinforcement 6-29
Transverse Reinforcement 6-29
Longitudinal Reinforcement 6-29

6.5.4 Reinforcement Requirements for Combined Flexure, Shear, and Torsion 6-29

6.6 Reinforcement Detailing 6-30

6.6.1 Concrete Cover 6-30

6.6.2 Flexural Reinforcement Spacing 6-30
Minimum Spacing of Flexural Reinforcing Bars 6-30
Maximum Spacing of Flexural Reinforcing Bars for Crack Control 6-33
Distribution of Tension Reinforcement in Flanges of T-Beams 6-33
Crack Control Reinforcement in Deep Flexural Members 6-34

6.6.3 Selection of Flexural Reinforcement 6-35

6.6.4 Development of Flexural Reinforcement 6-35
Overview 6-35
Development of Deformed Bars in Tension 6-35
Development of Standard Hooks in Tension 6-39
Development of Headed Deformed Bars in Tension 6-41
Development of Mechanically Anchored Deformed Bars in Tension 6-43
Development of Positive and Negative Flexural Reinforcement 6-43

6.6.5 Splices of Deformed Reinforcement 6-46
Overview 6-46
Lap Splices 6-46
Mechanical Splices 6-46
Welded Splices 6-47

6.6.6 Longitudinal Torsional Reinforcement 6-47

6.6.7 Transverse Reinforcement 6-48
Overview 6-48
Shear Reinforcement 6-48
Torsion Reinforcement 6-50

6.6.8 Structural Integrity Reinforcement 6-50

6.6.9 Flexural Reinforcement Requirements for SDC B 6-51

6.6.10 Recommended Flexural Reinforcement Details 6-51

6.7 Deflections 6-51

6.7.1 Overview 6-51

6.7.2 Immediate Deflections 6-53
Uncracked Sections 6-53
Cracked Sections 6-53
Effective Moment of Inertia 6-55
Approximate Immediate Deflections 6-56

6.7.3 Time-Dependent Deflections 6-56

6.7.4 Maximum Permissible Calculated Deflections 6-57
6.9 Examples

6.9.1 Example 6.1 – Determination of Beam Size: Building #1 (Framing Option C), Beam is Not Part of the LFRS, SDC A

6.9.2 Example 6.2 – Determination of Flexural Reinforcement: Beam in Building #1 (Framing Option C), Beam is Not Part of the LFRS, SDC A, Single Layer of Tension Reinforcement

6.9.3 Example 6.3 – Determination of Shear Reinforcement: Beam in Building #1 (Framing Option C), Beam is Not Part of the LFRS, SDC A

6.9.4 Example 6.4 – Determination of Reinforcement Details: Beam in Building #1 (Framing Option C), Beam is Not Part of the LFRS, SDC A

6.9.5 Example 6.5 – Determination of Deflections: Beam in Building #1 (Framing Option C), Beam is Not Part of the LFRS, SDC A

6.9.6 Example 6.6 – Determination of Flexural Reinforcement: Beam in Building #1 (Framing Option C), Beam is Part of the LFRS, SDC A, Multiple Layers of Tension Reinforcement

6.9.7 Example 6.7 – Determination of Shear Reinforcement: Beam in Building #1 (Framing Option C), Beam is Part of the LFRS, SDC A

6.9.8 Example 6.8 – Determination of Reinforcement Details: Beam in Building #1 (Framing Option C), Beam is Part of the LFRS, SDC A

6.9.9 Example 6.9 – Determination of Deflections: Beam in Building #1 (Framing Option C), Beam is Part of the LFRS, SDC A, Includes Compression Reinforcement

6.9.10 Example 6.10 – Determination of Joist Size: Joist in Building #2, Joist is Not Part of the LFRS, SDC C

6.9.11 Example 6.11 – Determination of Flexural Reinforcement: Joist in Building #2, Joist Not Part of the LFRS, SDC C

6.9.12 Example 6.12 – Determination of Shear Reinforcement: Joist in Building #2, Joist is Not Part of the LFRS, SDC C

6.9.13 Example 6.13 – Determination of Reinforcement Details: Joist in Building #2, Joist is Not Part of the LFRS, SDC C

6.9.14 Example 6.14 – Determination of Deflections: Joist in Building #2, Typical Floor, Joist is Not Part of the LFRS, SDC C

6.9.15 Example 6.15 – Determination of Beam Size: Edge Beam in Building #2, Beam is Not Part of the LFRS, SDC C

6.9.16 Example 6.16 – Determination of Flexural Reinforcement: Edge Beam in Building #2, Beam is Not Part of the LFRS, SDC C

6.9.17 Example 6.17 – Determination of Shear Reinforcement: Edge Beam in Building #2, Beam is Not Part of the LFRS, SDC C

6.9.18 Example 6.18 – Determination of Torsion Reinforcement: Edge Beam in Building #2, Second-Floor Level, Beam is Not Part of the LFRS, SDC C

6.9.19 Example 6.19 – Design for Combined Flexure, Shear, and Torsion: Edge Beam in Building #2, Beam is Not Part of the LFRS, SDC C

6.9.20 Example 6.20 – Determination of Reinforcement Details: Edge Beam in Building #2, Beam is Not Part of the LFRS, SDC C

Chapter 7

Columns

7.1 Overview

7.2 Dimensional Limits

7.3 Required Strength

7.3.1 Analysis Methods

7.3.2 Factored Axial Force and Moment

7.3.3 Slenderness Effects

7.3.4 Required Shear Strength for Columns in Buildings Assigned to Seismic Design Category B

7.4 Design Strength

7.4.1 General

7.4.2 Nominal Axial Strength

Nominal Axial Compressive Strength

Nominal Axial Tensile Strength
Design Guide on the ACI 318 Building Code Requirements for Structural Concrete
Example 7.11 – Construction of Nominal and Design Strength Interaction Diagrams: Building #1

Example 7.12 – Construction of Nominal and Design Strength Interaction Diagrams: Building #1 (Framing Option B), Rectangular, Tied Column, Grade 100 Longitudinal Reinforcement

Example 7.13 – Construction of Nominal and Design Strength Interaction Diagrams: Building #1 (Framing Option B), Circular, Tied Column, Grade 60 Longitudinal Reinforcement

Example 7.14 – Determination of Preliminary Column Size: Building #1 (Framing Option C), Rectangular, Tied Column is Part of the LFRS, SDC A, Column Subjected to Uniaxial Bending and Axial Forces

Example 7.15 – Determination of Nonsway or Sway Frame: Building #1 (Framing Option C), Rectangular, Tied Column is Part of the LFRS, SDC A

Example 7.16 – Check if Slenderness Effects Must be Considered: Building #1 (Framing Option C), Rectangular, Tied Column is Part of the LFRS, SDC A, Nonsway Frame

Example 7.17 – Determination of Longitudinal Reinforcement: Building #1 (Framing Option C), Rectangular, Tied Column is Part of the LFRS, SDC A, Nonsway Frame, Column Subjected to Uniaxial Bending and Axial Forces

Example 7.18 – Determination of Transverse Reinforcement: Building #1 (Framing Option C), Rectangular, Tied Column is Part of the LFRS, SDC A, Nonsway Frame, Column Subjected to Uniaxial Bending and Axial Forces

Example 7.19 – Determination of Dowel Reinforcement at the Foundation: Building #1 (Framing Option C), Rectangular, Tied Column is Part of the LFRS, SDC A, Nonsway Frame, Column Subjected to Uniaxial Bending and Axial Forces

Example 7.20 – Determination of Longitudinal Reinforcement: Building #1 (Framing Option C), Rectangular, Tied Column is Part of the LFRS, SDC A, Nonsway Frame, Column Subjected to Biaxial Bending and Axial Forces

Example 7.21 – Determination of Transverse Reinforcement: Building #1 (Framing Option C), Rectangular, Tied Column is Part of the LFRS, SDC A, Nonsway Frame, Column Subjected to Biaxial Bending and Axial Forces

Example 7.22 – Determination of Longitudinal Reinforcement: Building #1 (Framing Option C), Rectangular, Tied Column is Part of the LFRS, SDC A, Nonsway Frame, Column Subjected to Uniaxial Bending and Axial Forces, Slenderness Effects

Example 7.23 – Determination of Nonsway or Sway Frame: Building #1 (Framing Option B), Rectangular, Tied Column is Part of the LFRS, SDC A

Example 7.24 – Check if Slenderness Effects Must be Considered: Building #1 (Framing Option B), Rectangular, Tied Column is Part of the LFRS, SDC A, Sway Frame

Example 7.25 – Determination of Longitudinal Reinforcement: Building #1 (Framing Option B), Rectangular, Tied Column is Part of the LFRS, SDC A, Sway Frame, Column Subjected to Uniaxial Bending and Axial Forces, Slenderness Effects

Example 7.26 – Determination of Transverse Reinforcement: Building #1 (Framing Option B), Rectangular, Tied Column is Part of the LFRS, SDC A, Sway Frame, Column Subjected to Uniaxial Bending and Axial Forces, Slenderness Effects

Example 7.27 – Determination of Dowel Reinforcement at the Foundation: Building #1 (Framing Option B), Rectangular, Tied Column is Part of the LFRS, SDC A, Sway Frame, Column Subjected to Uniaxial Bending and Axial Forces, Slenderness Effects

Chapter 8
Walls

8.1 Overview

8.2 Design Limits

8.2.1 Minimum Wall Thickness

8.2.2 Intersecting Elements

8.3 Required Strength

8.3.1 Analysis Methods

8.3.2 Factored Axial Force, Moment, and Shear

8.3.3 Slenderness Effects

Overview

Moment Magnification Method

Alternative Method for Out-of-Plane Slender Wall Analysis
8.4 Design Strength

8.4.1 General

8.4.2 Nominal Axial Strength
- Nominal Axial Compressive Strength
- Nominal Axial Tensile Strength

8.4.3 Nominal Strength of Walls Subjected to Moment and Axial Forces
- Overview
- Rectangular Sections
- I-, T-, and L-Shaped Sections
- Simplified Design Method

8.4.4 Nominal Shear Strength
- In-Plane Shear
- Out-of-Plane Shear

8.5 Reinforcement Limits

8.6 Determining the Wall Thickness

8.7 Determination of Required Reinforcement

8.8 Reinforcement Detailing

8.9 Connections to Foundations

8.10 Design Procedure

8.11 Examples

8.11.1 Example 8.1 – Design of Reinforced Concrete Wall: Building #2, Interior Wall is Not Part of the SFRC, Simplified Design Method

8.11.2 Example 8.2 – Design of Reinforced Concrete Wall: Building #2, Exterior Wall is Not Part of the SFRC, Moment Magnification Method, Out-of-Plane Forces

8.11.3 Example 8.3 – Design of Reinforced Concrete Wall: Building #2, Exterior Wall is Not Part of the SFRC, Alternative Method for Out-of-Plane Forces

8.11.4 Example 8.4 – Determination of Trial Wall Thickness of Reinforced Concrete Wall: Building #2, SDC C, Interior Wall is Part of the SFRC

8.11.5 Example 8.5 – Design of Reinforced Concrete Wall for Combined Flexure and Axial Forces: Building #2, SDC C, Interior Wall is Part of the SFRC

8.11.6 Example 8.6 – Design of Reinforced Concrete Wall for Shear Forces: Building #2, SDC C, Interior Wall is Part of the SFRC

8.11.7 Example 8.7 – Determination of Dowel Reinforcement at the Foundation of a Reinforced Concrete Wall: Building #2, SDC C, Interior Wall is Part of the SFRC

Chapter 9

Diaphragms

9.1 Overview

9.2 Minimum Diaphragm Thickness

9.3 Required Strength

9.3.1 General

9.3.2 Diaphragm Design Forces
- Overview
- In-Plane Forces due to Lateral Loads
- In-Plane Forces due to Transfer Forces
- Connection Forces Between the Diaphragm and Vertical Framing or Nonstructural Elements
- Forces Resulting from Bracing Vertical or Sloped Building Elements
- Out-of-Plane Forces
- Collector Design Forces

9.3.3 Diaphragm Modeling and Analysis
- Overview
- In-Plane Stiffness Modeling
- Analysis Methods
- Equivalent Beam Model with Rigid Supports
- Corrected Equivalent Beam Method with Spring Supports
- Diaphragms with Openings

9.4 Design Strength

9.4.1 General

9.4.2 Nominal Moment and Axial Force Strength
9.4.3 Nominal Shear Strength
Shear Transfer
9-21
9.4.4 Collectors
9-22
9.5 Reinforcement Limits
9-22
9.6 Determination of Required Reinforcement
9-22
9.6.1 Chord Reinforcement
9-22
9.6.2 Diaphragm Shear Reinforcement
9-23
9.6.3 Shear Transfer Reinforcement
9-24
9.6.4 Reinforcement Due to Eccentricity of Collector Forces
9-25
9.6.5 Collector Reinforcement
9-27
Overview
9-27
Slabs
9-27
Beams
9-28
9.7 Reinforcement Detailing
9-28
9.8 Design Procedure
9-29
9.9 Examples
9-29
9.9.1 Example 9.1 – Determination of Diaphragm In-Plane Forces: Building #1 (Framing Option B), SDC A, Collectors Not Required
9-29
9.9.2 Example 9.2 – Determination of Diaphragm Reinforcement: Building #1 (Framing Option B), SDC A, Collectors Not Required
9-32
9.9.3 Example 9.3 – Determination of Diaphragm In-Plane Forces: Building #1 (Framing Option B), SDC A, Collectors Required, Collector Width the Same as the Width of the Vertical Elements of the LFRS
9-34
9.9.4 Example 9.4 – Determination of Diaphragm Reinforcement: Building #1 (Framing Option B), SDC A, Collectors Required, Collector Width the Same as the Width of the Vertical Elements of the LFRS
9-36
9.9.5 Example 9.5 – Determination of Diaphragm In-Plane Forces: Building #1 (Framing Option C), SDC A, Collectors Required, Collector Width the Same as the Width of the Vertical Elements of the LFRS
9-39
9.9.6 Example 9.6 – Determination of Diaphragm Reinforcement: Building #1 (Framing Option C), SDC A, Collectors Required, Collector Width the Same as the Width of the Vertical Elements of the LFRS
9-43
9.9.7 Example 9.7 – Determination of Diaphragm In-Plane Forces: Building #2, SDC C, Collectors Required, Collector Width the Same as the Width of the Vertical Elements of the SFRS
9-46
9.9.8 Example 9.8 – Determination of Diaphragm Reinforcement: Building #2, SDC C, Collectors Required, Collector Width the Same as the Width of the Vertical Elements of the SFRS
9-51
9.9.9 Example 9.9 – Determination of Diaphragm In-Plane Forces: Building #2, SDC C, Collectors Required, Collector Width Wider than the Width of the Vertical Elements of the SFRS
9-54
9.9.10 Example 9.10 – Determination of Diaphragm Reinforcement: Building #2, SDC C, Collectors Required, Collector Width Wider than the Width of the Vertical Elements of the SFRS
9-56

Chapter 10
Foundations
10.1 Overview
10-1
10.2 Design Criteria
10-1
10.3 Footings
10-1
10.3.1 Overview
10-1
10.3.2 Determining the Base Area of a Footing
10-4
Overview
10-4
Isolated Spread Footing
10-5
Combined Footings
10-6
10.3.3 Determining the Thickness of a Footing
10-8
Overview
10-8
Minimum Thickness Based on Flexural Requirements
10-9
Minimum Thickness Based on Shear Requirements
10-10
10.3.4 Determining the Flexural Reinforcement
10-13
10.3.5 Detailing the Flexural Reinforcement
10-13
10.3.6 Development of Flexural Reinforcement
10-14
10.3.7 Force Transfer at the Base of Supported Members
10-17
Overview
10-17
Vertical Transfer – Compression
10-17
Vertical Transfer – Tension
10-20
Horizontal Transfer
10-21
10.3.8 Design Procedure
10-24
10.4 Drilled Piers
10-24
10.4.1 Overview
10-24
10.4.2 Design Methods
10-25
Overview
10-25
Allowable Axial Strength
10-25
Strength Design
10-25
10.4.3 Determining the Pier Size
10-26
Allowable Axial Strength
10-26
Strength Design
10-27
10.4.4 Determining the Bell Diameter 10-27
10.4.5 Reinforcement Details 10-28

10.5 Examples 10-28

10.5.1 Example 10.1 – Design of a Wall Footing Subjected to Axial Compression: Building #2 10-29
10.5.2 Example 10.2 – Design of a Square Isolated Spread Footing Subjected to Axial Compression: Building #1 (Framing Option B), SDC A 1-33
10.5.3 Example 10.3 – Design of a Rectangular Isolated Spread Footing Subjected to Axial Compression: Building #1 (Framing Option B), SDC A 10-37
10.5.4 Example 10.4 – Design of a Square Isolated Spread Footing Subjected to Axial Compression and Flexure: Building #1 (Framing Option C), SDC A 10-41
10.5.5 Example 10.5 – Design of a Square Isolated Spread Footing Subjected to Axial Compression and Flexure: Building #1 (Framing Option B), SDC A 10-49
10.5.6 Example 10.6 – Design of a Combined Rectangular Spread Footing Subjected to Axial Compression: Building #1 (Framing Option B), SDC A 10-56
10.5.7 Example 10.7 – Design of a Drilled Pier Subjected to Axial Compression: Building #1 (Framing Option B), SDC A 10-67

Chapter 11
Beam-Column and Slab-Column Joints

11.1 Overview 11-1
11.2 Design Criteria 11-1
11.3 Detailing of Joints 11-2
11.3.1 Beam-Column Joint Transverse Reinforcement 11-2
11.3.2 Slab-Column Joint Transverse Reinforcement 11-3
11.3.3 Longitudinal Reinforcement 11-3
11.4 Strength Requirements for Beam-Column Joints 11-7
11.4.1 Required Shear Strength 11-7
 Overview 11-7
 Joints in Moment Frames Subjected to Gravity Loads Only 11-7
 Joints in Moment Frames Subjected to Gravity and Lateral Loads 11-10
11.4.2 Design Shear Strength 11-12

11.5 Transfer of Column Axial Force Through the Floor System 11-15
11.6 Examples 11-16

11.6.1 Example 11.1 – Check of Joint Shear Strength, Edge Column is Not Part of the LFRS: Building #1 (Framing Option C), SDC A 11-16
11.6.2 Example 11.2 – Check of Joint Shear Strength, Edge Column is Part of the LFRS: Building #1 (Framing Option C), SDC A 11-17
11.6.3 Example 11.3 – Check of Joint Shear Strength, Corner Column is Part of the LFRS: Building #1 (Framing Option B), SDC A 11-19
11.6.4 Example 11.4 – Check of Joint Shear Strength, Edge Column is Part of the SFRS: Building #1 (Framing Option B), SDC B 11-21
11.6.5 Example 11.5 – Adequacy of Transfer of Column Axial Force, Interior Column: Building #1 (Framing Option B), SDC A 11-23

Chapter 12
Earthquake-Resistant Structures – Overview

12.1 Overview 12-1
12.2 Seismic Design Category 12-1
12.3 Design and Detailing Requirements 12-1
12.4 Structural Systems 12-2
12.4.1 Overview 12-2
12.4.2 Bearing Wall Systems 12-5
 Overview 12-5
 SDC B 12-5
 SDC C 12-5
 SDC D, E, or F 12-5
12.4.3 Building Frame Systems 12-6
 Overview 12-6
 SDC B 12-6
 SDC C 12-6
 SDC D, E, or F 12-6
12.4.4 Moment-Resisting Frame Systems 12-6
 Overview 12-6
 SDC B 12-6
 SDC C 12-6
 SDC D, E, or F 12-6
12.4.5 Dual Systems 12-6
 Overview 12-6
 SDC B 12-7
Chapter 13
Earthquake-Resistant Structures – SDC B and C

13.1 Overview 13-1

13.2 Ordinary Moment Frames (SDC B) 13-1
 13.2.1 Overview 13.1
 13.2.2 Beams 13-2
 13.2.3 Columns 13-2
 13.2.4 Beam-Column Joints 12-3

13.3 Intermediate Moment Frames (SDC C) 13-4
 13.3.1 Overview 13-4
 13.3.2 Beams 13-4
 Overview 13-4
 Flexural Strength Requirements 13-4
 Shear Strength Requirements 13-5
 13.3.3 Columns 13-8
 Overview 13-8
 Shear Strength Requirements 13-9
 Columns Supporting Reactions from Discontinuous Stiff Members 13-12
 13.3.4 Joints 13-13
 Beam-Column Joints 13-13
 Slab-Column Joints 13-19
 Shear Strength Requirements for Beam-Column Joints 13-19
 13.3.5 Two-way Slabs Without Beams 13-23
 Overview 13-23
 Analysis Methods 13-23
 Required Flexural Reinforcement 13-23
 Detailing the Flexural Reinforcement 13-24
 Shear Strength Requirements 13-25

13.4 Foundations 13-25

13.5 Examples 13-29
 13.5.1 Example 13.1 – Determination of Flexural Reinforcement: Beam in Building #1 (Framing Option B), Beam is Part of the SFRS (Intermediate Moment Frame), SDC C 13-29
 13.5.2 Example 13.2 – Determination of Shear Reinforcement: Beam in Building #1 (Framing Option B), Beam is Part of the SFRS (Intermediate Moment Frame), SDC C 13-32
 13.5.3 Example 13.3 – Determination of Torsion Reinforcement: Beam in Building #1 (Framing Option B), Beam is Part of the SFRS (Intermediate Moment Frame), SDC C 13-33
 13.5.4 Example 13.4 – Design for Combined Flexure, Shear, and Torsion: Beam in Building #1 (Framing Option B), Beam is Part of the SFRS (Intermediate Moment Frame), SDC C 13-35
 13.5.5 Example 13.5 – Determination of Longitudinal Reinforcement: Column in Building #1 (Framing Option B), Column is Part of the SFRS (Intermediate Moment Frame), SDC C 13-39
 13.5.6 Example 13.6 – Determination of Transverse Reinforcement: Column in Building #1 (Framing Option B), Column is Part of the SFRS (Intermediate Moment Frame), SDC C 13-41
 13.5.7 Example 13.7 – Determination of Lap Splice Length: Column in Building #1 (Framing Option B), Column is Part of the SFRS (Intermediate Moment Frame), SDC C 13-44
 13.5.8 Example 13.8 – Check of Joint Shear Strength: Column in Building #1 (Framing Option B), Column is Part of the SFRS (Intermediate Moment Frame), SDC C 13-46
 13.5.9 Example 13.9 – Determination of Flexural Reinforcement: Two-way Slab in Building #1 (Framing Option A), Two-way Slab is Part of the SFRS (Intermediate Moment Frame), SDC C 13-48
 13.5.10 Example 13.10 – Check of Two-way Shear Strength Requirements: Two-way Slab in Building #1 (Framing Option A), Two-way Slab is Part of the SFRS (Intermediate Moment Frame), SDC C 13-57
 13.5.11 Example 13.11 – Design of Foundation Seismic Tie: Column in Building #1 (Framing Option B), Column is Part of the SFRS (Intermediate Moment Frame), SDC C 13-60

Chapter 14
Earthquake-Resistant Structures – SDC D, E and F

14.1 Overview 14-1

14.2 Beams of Special Moment Frames 14-2
 14.2.1 Overview 14-2
 14.2.2 Dimensional Limits 14-2
 14.2.3 Longitudinal Reinforcement 14-3
 Determining the Required Flexural Reinforcement 14-3
 Detailing the Flexural Reinforcement 14-4
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.2.4</td>
<td>Transverse Reinforcement</td>
<td>14-11</td>
</tr>
<tr>
<td></td>
<td>Determining the Required Transverse Reinforcement</td>
<td>14-11</td>
</tr>
<tr>
<td></td>
<td>Detailing the Transverse Reinforcement</td>
<td>14-14</td>
</tr>
<tr>
<td>14.3</td>
<td>Columns of Special Moment Frames</td>
<td>14-15</td>
</tr>
<tr>
<td>14.3.1</td>
<td>Overview</td>
<td>14-15</td>
</tr>
<tr>
<td>14.3.2</td>
<td>Dimensional Limits</td>
<td>14-16</td>
</tr>
<tr>
<td>14.3.3</td>
<td>Minimum Flexural Strength of Columns</td>
<td>14-17</td>
</tr>
<tr>
<td>14.3.4</td>
<td>Longitudinal Reinforcement</td>
<td>14-19</td>
</tr>
<tr>
<td></td>
<td>Determining the Required Longitudinal Reinforcement</td>
<td>14-19</td>
</tr>
<tr>
<td></td>
<td>Detailing the Longitudinal Reinforcement</td>
<td>14-20</td>
</tr>
<tr>
<td>14.3.5</td>
<td>Transverse Reinforcement</td>
<td>14-21</td>
</tr>
<tr>
<td></td>
<td>Determining the Required Transverse Reinforcement</td>
<td>14-21</td>
</tr>
<tr>
<td></td>
<td>Detailing the Transverse Reinforcement</td>
<td>14-24</td>
</tr>
<tr>
<td>14.4</td>
<td>Joints of Special Moment Frames</td>
<td>14-29</td>
</tr>
<tr>
<td>14.4.1</td>
<td>Overview</td>
<td>14-29</td>
</tr>
<tr>
<td>14.4.2</td>
<td>Transverse Reinforcement</td>
<td>14-30</td>
</tr>
<tr>
<td>14.4.3</td>
<td>Shear Strength</td>
<td>14-30</td>
</tr>
<tr>
<td>14.4.4</td>
<td>Development Length of Bars in Tension</td>
<td>14-35</td>
</tr>
<tr>
<td>14.5</td>
<td>Special Structural Walls</td>
<td>14-36</td>
</tr>
<tr>
<td>14.5.1</td>
<td>Overview</td>
<td>14-36</td>
</tr>
<tr>
<td>14.5.2</td>
<td>Reinforcement</td>
<td>14-37</td>
</tr>
<tr>
<td></td>
<td>Minimum Reinforcement Requirements</td>
<td>14-37</td>
</tr>
<tr>
<td></td>
<td>Tension Development and Splice Requirements</td>
<td>14-38</td>
</tr>
<tr>
<td>14.5.3</td>
<td>Design Shear Force</td>
<td>14-42</td>
</tr>
<tr>
<td>14.5.4</td>
<td>Shear Strength</td>
<td>14-44</td>
</tr>
<tr>
<td>14.5.5</td>
<td>Design for Flexure and Axial Force</td>
<td>14-46</td>
</tr>
<tr>
<td>14.5.6</td>
<td>Boundary Elements of Special Structural Walls</td>
<td>14-47</td>
</tr>
<tr>
<td></td>
<td>Overview</td>
<td>14-47</td>
</tr>
<tr>
<td></td>
<td>Displacement-Based Approach (ACI 18.10.6.2)</td>
<td>14-47</td>
</tr>
<tr>
<td></td>
<td>Compressive Stress Approach (ACI 18.10.6.3)</td>
<td>14-48</td>
</tr>
<tr>
<td></td>
<td>Design and Detailing Requirements for Special Boundary Elements</td>
<td>14-50</td>
</tr>
<tr>
<td></td>
<td>Design and Detailing Requirements Where Special Boundary Elements Are Not Required</td>
<td>14-51</td>
</tr>
<tr>
<td></td>
<td>Summary of Boundary Element Requirements for Special Structural Walls</td>
<td>14-54</td>
</tr>
<tr>
<td>14.5.7</td>
<td>Coupling Beams</td>
<td>14-55</td>
</tr>
<tr>
<td></td>
<td>Overview</td>
<td>14-55</td>
</tr>
<tr>
<td></td>
<td>Design and Detailing Requirements</td>
<td>14-56</td>
</tr>
<tr>
<td>14.5.8</td>
<td>Wall Piers</td>
<td>14-59</td>
</tr>
<tr>
<td>14.5.9</td>
<td>Ductile Coupled Structural Walls</td>
<td>14-59</td>
</tr>
<tr>
<td>14.5.10</td>
<td>Construction Joints</td>
<td>14-60</td>
</tr>
<tr>
<td>14.5.11</td>
<td>Discontinuous Walls</td>
<td>14-60</td>
</tr>
<tr>
<td>14.6</td>
<td>Diaphragms</td>
<td>14-60</td>
</tr>
<tr>
<td>14.6.1</td>
<td>Overview</td>
<td>14-60</td>
</tr>
<tr>
<td>14.6.2</td>
<td>Minimum Thickness</td>
<td>14-60</td>
</tr>
<tr>
<td>14.6.3</td>
<td>Reinforcement</td>
<td>14-60</td>
</tr>
<tr>
<td></td>
<td>Minimum Reinforcement</td>
<td>14-60</td>
</tr>
<tr>
<td></td>
<td>Development and Splices</td>
<td>14-60</td>
</tr>
<tr>
<td></td>
<td>Collectors</td>
<td>14-61</td>
</tr>
<tr>
<td>14.6.4</td>
<td>Flexural Strength</td>
<td>14-61</td>
</tr>
<tr>
<td>14.6.5</td>
<td>Shear Strength</td>
<td>14-61</td>
</tr>
<tr>
<td>14.6.6</td>
<td>Construction Joints</td>
<td>14-63</td>
</tr>
<tr>
<td>14.7</td>
<td>Foundations</td>
<td>14-63</td>
</tr>
<tr>
<td>14.7.1</td>
<td>Overview</td>
<td>14-63</td>
</tr>
<tr>
<td>14.7.2</td>
<td>Footings, Foundation Mats, and Pile Caps</td>
<td>14-63</td>
</tr>
<tr>
<td>14.7.3</td>
<td>Grade Beams and Slabs-on-ground</td>
<td>14-64</td>
</tr>
<tr>
<td>14.7.4</td>
<td>Foundation Seismic Ties</td>
<td>14-64</td>
</tr>
<tr>
<td></td>
<td>Overview</td>
<td>14-64</td>
</tr>
<tr>
<td></td>
<td>Design and Detailing Requirements</td>
<td>14-64</td>
</tr>
<tr>
<td>14.7.5</td>
<td>Deep Foundations</td>
<td>14-65</td>
</tr>
<tr>
<td>14.8</td>
<td>Members Not Designated as Part of the SFRS</td>
<td>14-69</td>
</tr>
<tr>
<td>14.8.1</td>
<td>Overview</td>
<td>14-69</td>
</tr>
<tr>
<td>14.8.2</td>
<td>Beams</td>
<td>14-70</td>
</tr>
<tr>
<td>14.8.3</td>
<td>Columns</td>
<td>14-71</td>
</tr>
<tr>
<td>14.8.4</td>
<td>Joints</td>
<td>14-73</td>
</tr>
<tr>
<td>14.8.5</td>
<td>Slab-Column Connections</td>
<td>14-75</td>
</tr>
<tr>
<td>14.8.6</td>
<td>Wall Piers</td>
<td>14-76</td>
</tr>
<tr>
<td>14.9</td>
<td>Examples</td>
<td>14-76</td>
</tr>
<tr>
<td>14.9.1</td>
<td>Example 14.1 – Determination of Flexural Reinforcement: Beam in Building #1 (Framing Option C), Beam is Part of the SFRS (Special Moment Frame), SDC D</td>
<td>14-76</td>
</tr>
<tr>
<td>14.9.2</td>
<td>Example 14.2 – Determination of Shear Reinforcement: Beam in Building #1 (Framing Option C), Beam is Part of the SFRS (Special Moment Frame), SDC D</td>
<td>14-80</td>
</tr>
<tr>
<td>14.9.3</td>
<td>Example 14.3 – Determination of Cutoff Points of Flexural Reinforcement: Beam in Building #1 (Framing Option C), Beam is Part of the SFRS (Special Moment Frame), SDC D</td>
<td>14-83</td>
</tr>
<tr>
<td>14.9.4</td>
<td>Example 14.4 – Determination of Longitudinal Reinforcement: Interior Column in Building #1 (Framing Option C), Column is Part of the SFRS (Special Moment Frame), SDC D</td>
<td>14-85</td>
</tr>
</tbody>
</table>
14.9.5 Example 14.5 – Determination of Transverse Reinforcement: Interior Column in Building #1 (Framing Option C), Column is Part of the SFRS (Special Moment Frame), SDC D
14.9.6 Example 14.6 – Check of Joint Shear Strength: Interior Column in Building #1 (Framing Option C), Column is Part of the SFRS (Special Moment Frame), SDC D
14.9.7 Example 14.7 – Determination of Longitudinal Reinforcement: Corner Column in Building #1 (Framing Option C), Column is Part of the SFRS (Special Moment Frame), SDC D
14.9.8 Example 14.8 – Determination of Transverse Reinforcement: Corner Column in Building #1 (Framing Option C), Column is Part of the SFRS (Special Moment Frame), SDC D
14.9.9 Example 14.9 – Check of Joint Shear Strength: Corner Column in Building #1 (Framing Option C), Column is Part of the SFRS (Special Moment Frame), SDC D
14.9.10 Example 14.10 – Design of Special Structural Wall: Building #3, Wall is Part of the SFRS (Building Frame System), SDC D, Displacement-Based Approach
14.9.11 Example 14.11 – Design of Special Structural Wall: Building #4, Wall is Part of the SFRS (Dual System), SDC D, Compressive Stress Approach
14.9.12 Example 14.12 – Design of a Coupling Beam (Dual System): Building #4, SDC D
14.9.14 Example 14.14 – Design of Foundation Seismic Tie: Building #1 (Framing Option C), SDC D
14.9.15 Example 14.15 – Determination of Required Reinforcement: Beam in Building #4, Beam is Not Part of the SFRS, SDC D
14.9.16 Example 14.16 – Determination of Required Reinforcement: Column in Building #4, Column is Not Part of the SFRS, SDC D
14.9.17 Example 14.17 – Check of Slab-Column Connection: Column in Building #3, Column is Not Part of the SFRS, SDC D

Appendix A
References A-1

Appendix B
Reinforcing Bar Data
Table B.1 ASTM Standard Reinforcing Bars B-1
Table B.2 Overall Reinforcing Bar Diameters B-2

Appendix C
Section Index C-1